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Abstract

In this paper we suggest a strictly evolutionary approach of establishing normative

behavior and norms in agent systems. Our approach is strongly inspired by macro-

sociological systems theory and is especially based on symbolically generalized media

of communication. By means of expectation structures we avoid well-known problems

of logic based methods, which usually arise around the notion of commitments. Our

concept of norms is, due to the chosen background of systems theory, an observer based

notion.
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1 Introduction

Although norms are represented in some way in individuals it is a diÆcult matter to

set up norms in multi-agent systems in a sociologically reasonable way by means of

logic based approaches. A predominant role in such approaches play commitments

(e. g. [3]), e. g., embedded in a BDI-architecture [12]. However, it is generally assumed

that norms came into existence by evolution [15]. There are approaches that code a

normative behavior directly into the agent architecture ([13]), in order to look at the

dynamics of the system. Also, the evolutionary dynamics of a population of normative

agents and of strategic agents is considered ([9]) and the proportion of survived agents

in relation to their type (normative vs. strategic) is evaluated.

In this paper we focus on the evolution of a behavior that may be regarded as

normative from the point of view of an observer. In our simulations, the behavior of

agents is not determined in advance, thus no norm can be assumed to exist at the

beginning of a simulation. A normative behavior can only evolve, based on expectation

structures, which play a crucial role in our agent architecture.

In Section 2 we present a short overview about a sociological theory which serves

as a basis of our research. The bene�ts of symbolically generalized media, introduced

in Section 2, are discussed in Section 3 in relation to multi-agent systems. We describe

the framework of our simulation in Section 4, and the agent architecture in Section 5

together with the achieved simulation results. Section 6 concludes the paper.
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2 Norms in the Context of Autonomous Social

Systems

In the research project we present here, we focus on individual cognitive autonomy and

the function of communication in processes of individual acquisition of social compe-

tence. We analyze the conditions which allow the emergence of symbol systems that

are used by interacting agents to coordinate their behavior. The \semantics" of the

symbols is expected to evolve during the simulation; each agent is supposed to learn

how to react on communication in order to gain cooperational bene�ts. Therefore, we

refer to norms not as prescriptive behavioral rules that represent concepts of social

reality, but as e�ects of coordinated behavioral selectivities, individually learned in

communicational interaction with others.

The central characteristics of this modeling approach are inspired by the theoretical

work of the German sociologist Niklas Luhmann, who formulated a macro-theoretical

position that introduces social systems as emergent autopoietic systems, based on self-

referential communication [6, 7]. Due to the fact that in autopoietic theory systems

are de�ned by the organization and e�ects of self-referential processes, a strong ana-

lytical distinction of individual cognitive systems and communication-based systems is

necessary: While cognitive systems can be characterized by the operationally closed

self-referential selection of neuronal modes (perceptible as thoughts, meaning and ex-

pectations), communication-based systems refer to self-referential selection of commu-

nicative behavior in the interaction of individuals. Luhmann explains the emergence of

autonomous communication-based systems as a result of structural couplings, consti-

tuted by interacting individuals that perceive each-other as \black boxes". They have

to learn to generate information by observing each others, to build expectations and to

select communicative reactions in order to manipulate others according to these expec-

tations. As a consequence of this situation of double contingency { based on recurrent

expectations of communicative reactions { structures of self-referred communication

may emerge if they lead to the manipulation of individual behavioral selectivities (in-

cluding communication and perception) in a way that allows their own reproduction

and, simultaneously, the reproduction of the involved cognitive systems. Concerning

the type of system-constituting self-referential processes, communication-based social

systems have to be located as autonomous and autopoietic in the environment of indi-

vidual cognitive systems.

The constructivistic roots of Luhmann's approach have strong consequences on the

analysis of norms: The identi�cation of \a norm" can only be made by an observer;

in any case, it is an individual cognitive phenomenon, based on expectations about

the social behavior of others in an iterated \prediction-and-error"-analysis. If the so

constructed model of the complexity-reduced social environment allows predictions that

match the observed facts, this gain of social competence may allow coordinated behavior

and results in social integration. Thus, any social phenomenon is based on inter-related

cognitive expectations and behavioral selectivities. The relevant question in the context

of normative analysis is: which expectation needs to be perceived as being normative?

Luhmann's answer refers to the way how expectations are build and changed [7, pp.

319]:

1. Normative expectations are de�ned as expectations, which are not modi�ed if

they are disappointed.

2. Additionally, in the case of disappointment, there exist pre-dispositions what to

do then.

The �rst mentioned characteristic of normative expectations { as being de�ned as

not objected to modi�cations if disappointed { has implications on the behavioral dispo-

sition of others, as far as further interactions with the deviant individual are intended:

The renunciation of expectational adaptation is only possible, if the individual member

of a society can rely on the support of others in the case of a conict [8, p. 638]. Thus,
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the concept of norms is strongly related to the ability of being able to mobilize cooper-

ational networks in order to apply an aggregation of sanctions, that has to be avoided

in any case by the one who breaks the rules. The possibility to do so presupposes the

existence of special forms of symbolic communication, which can be used to symbolize

the dominant ability and willingness to enforce, if necessary, the adaptation of deviant

behavior to the own normative expectations. This form of symbolized treatment only

works, if the symbols, their meaning and the constraints of using them are known by all

members of the society. Additionally, everybody has to know that the other members

are also aware of the meaning of these symbols.

2.1 Generalized Media

The concept of gaining inuence on behavioral selectivities by symbolizing the potential

to engage others, is de�ned by Luhmann as symbolically generalized media of commu-

nication. It is strongly inuenced by the concept of generalized media of interchange,

formulated by Talcott Parsons [11]. In the context of sociological systems theory, these

concepts are used to explain the functional di�erentiation of social structures and co-

operation in modern society. Therefore, the analysis of the evolutionary mechanisms of

generalized media in multi-agent societies is one of the central interests of our research

project.

Generalized media may be coded in di�erent ways: For functional di�erentiation

and evolution of norms, the codings of power and money are of upmost importance.

The main bene�t of using generalized media in processes of functional di�erentiation is

the possibility to avoid ponderous procedures of committing others to cooperation: By

means of generalized media { regardless of the situation they are used in { others can

e�ectively be convinced to cooperate by generating expectations (about sanctions or

rewards) that directly inuence their motivational basis of behavioral selectivity. There-

fore, generalized media are coded in a simple binary way: If based on the symbolization

of power, it uses the distinction of right/false in the second-order-coding mechanism of

law. In a similar way, the media of money-based communication uses the distinction

of having/not-having to symbolize social claims of opportunities of action (cf. [4]).

In any case, symbolically generalized media has an autocatalytic function in pro-

cesses of structural di�erentiation: If generalized media is involved, networks of cooper-

ation can use its mechanism to symbolize the aggregated sanctioning/reward-potential

{ resulting from cooperational bene�ts { to motivate others to cooperate too. In this

context, the media itself is only a universal mechanism to motivate cooperation: it

is independent of the speci�c functional communication of di�erentiated subsystems,

but grants the integration of the system itself. This dynamic reinforces the symbol-

izing mechanism of generalized media, as long as sanctions or rewards can e�ectively

be applied if needed. Usually, this is an exception, as most people cooperate without

trying to test if they really get applied to sanctions if they do not comply with nor-

mative rules. Nevertheless, if sanctions or rewards cannot be applied as expected (and

this situation is observed by others), the symbolizing mechanism of generalized media

collapses inationary (the most prominent examples of these kind of phenomena are

rebellions, civil wars and money-ination).

2.2 Predispositions

According to Luhmann, there's another important characteristic of normative expecta-

tions we want to integrate in our simulation model: As already mentioned in point two

of the de�nition above, normative expectations include predispositions if they are dis-

appointed. In the context of human society, this feature is important to be not regarded

as being naive or socially incompetent. Luhmann emphasized the importance to refer

to this predisposition when normative expectations are expressed to others ([7, 437])

One way of doing so is to symbolize the readiness to apply sanctions as described above.

Additionally, this concept of behavioral predispositions in case of disappointment has

to be modeled on the cognitive level of agents. Our approach is to model some { as
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we expect { central characteristics of cognitive framing processes as far as behavioral

selectivities are concerned. We want to emphasize, that no representational implica-

tions (e.g. those of \norms" or \interests") are intended. Our strategy is to draw

a distinction between two classes of possible reactions, depending on the situational

context:

� On the one hand, there are communicational and other behavioral reactions, that

are performed by the majority of others in a comparable situation. In the context

of cooperation, they coordinate the individual contributions and are perceived

as being the \usual" behavior as de�ned by social norms. The range of possible

normative reactions that are expectable in a given situation can be represented

as organized in a cognitive \frame". We de�ne this frame as a set of selectivities,

that relate expectable observations and normative reactions in the context of a

given situation.

� Other observations, that are not expected in the context of this situation, have to

trigger a specialized procedures in order to clarify the reason for the unexpected

reaction. If the unexpected reaction is identi�ed as intended (other possibilities

like misunderstandings etc. have to be excluded) normative conformity may be

enforced by using the mechanism of generalized media as described above.

3 Bene�ts of Media in Agent Systems

But apart from these functions on the level of the social system, what is the function of

such a medium on the interactional level? As Luhmann states, symbolically generalized

media of communication reduce complexity, especially complexity outside an individual.

A very complex situation may collapse into a simple yes-or-no question. By means of

these media, a lot of information and therefore complexity is excluded from interest, and

an interaction just focuses on a yes or on a no, or in other words, accepting something

or not accepting something. For example, if one individual o�ers something to buy,

another individual just thinks about buying it or not, but it does not think about the

reason why the other individual may sell it, or what product it wants to get for it

later. A buyer has no reason to care about the money when it is once spent, and a

seller does not care about where the money comes from. Luhmann points out that

symbolically generalized media are based on their \embodiness". They are related to

physical entities, e. g. money is related to needs, or power is related to physical force

and pain

Why do media reduce complexity during an interaction? They serve as structures of

expectation, they order and structure with respect to what should be expected in which

situation. On the one hand, media reduce possibilities, and, on the other hand, they

open possibilities for further communication or the prospect of further communication.

Thus, media reduce external complexity to expectable internal complexity.

Some concepts related to symbolic media are already dealt with on a large scale in

multi-agent research, especially norms (see e. g. [9] or [2]) and market based coordina-

tion mechanisms (see e. g. [10] or [1]). All the mechanisms based on these concepts,

�rst of all norms, have the goal of enabling interactions between agents which do not

know much about each other, but do know something in general. Norms are condensed

expectation structures. A population wide norm makes actions of agents expectable.

It is obvious that mechanisms like symbolically generalized media of communication

may play an important role in scaling huge agent systems. The largest utility of media

is concerned with their knowledge reducing e�ect for agent interactions. Interactions,

controlled by a medium, are structured in a straightforward way. They do not ensure

that an interaction always succeeds, but they ensure that

� agents know in advance on what aspect(s) negotiation should be limited,

� agents need not to know each other,

� agents can be black boxes to each other (they cannot look inside their head), but

coordination may still succeed, and
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� agents know in what stage an interaction currently is, and when it should be

stopped.

Every agent is only concerned with its own beliefs or goals, there is no need to take into

account elaborated reasoning mechanisms about beliefs or goals of other agents, since

they become immediately apparent to each other during an interaction to some extent.

Whatever an agent wants or believes it will be canalized by a medium to another agent.

A medium does not reveal an agent's goal or its beliefs, but it o�ers a way to achieve

a goal or to verify or to strengthen its own beliefs.

Di�erent media are based on di�erent techniques to support inter-agent coordina-

tion. Power may an agent force to do something which is not in its own best interest,

but may serve someone else. Especially the symbolized power by many agents may

another agent force to con�rm and to comply with population wide norms. Symboliz-

ing power does not necessarily mean to apply power, it just symbolizes the potential

application of power. However, in the case power is applied the receiver su�ers in some

way.

The medium money is related to resources, especially to the shortage of one or more

resources. Because money is the second coding of assets (of resources) (see [7]) it serves

as an exchange medium for all kinds of resources. Therefore, an agent without a direct

access to a certain resource but with a need for it may get it by spending money. That

is, if two agents negotiate about the access to a resource they do it by negotiating the

value for it. As a result they do not negotiate on the basis of who has a more urgent

need for the resource, or which agent has a greater impact on the hole population.

4 The Model

A simulation consists of a large number of trials of a cooperation game which we

called the \Planter-and-Harvester-Game" for simplicity. We introduce two di�erent

types of agents, with respect to their ability to change the environment. There are

also two types of actions that change the state of the environment in an e�ective way,

namely \planting" and \harvesting" complementing each other. Plant agents, called

P lanter (or agent type 0) can perform only plant actions e�ectively, harvest agents,

called Harvester (or agent type 1) can perform only harvest actions e�ectively. At

the beginning of a game the environment U is always in state Us = 0. A plant action

P lantI { performed by a P lanter { transforms the environment into state Ut = 1, a

harvest action HarvestI { performed by a Harvester { transforms it into the �nal

state Ue = 2. In more complicated games the �nal state may be Ue > 2 assuming

action sequences P lantI , HarvestI , P lantII , and so on. Action P lantI in state U = 1

has no e�ect with regard to the state of the environment, similarly action HarvestI in

state U = 0. In general, the transformation of the environment state Ut at time t that

a plant agent may perform by action at is de�ned by

[(Ut = i) ^ ((i mod 2 = 0) ^ (type = 0)) ^ (at = i)] =) Ut+1 := i+ 1

and for harvest agents by

[(Ut = i) ^ ((i mod 2 = 1) ^ (type = 1)) ^ (at = i)] =) Ut+1 := i+ 1 :

In any other situation the environment remains in state i (Ut+1 = i).

At the beginning of a game two agents are randomly selected from the population,

and one of them is chosen as the start agent. This agent begins by sending a message

M0. The other agent receives this message and does both, it { the �rst time { performs

an action a1 and sends another message M1 to the start agent. Then, the �rst agent

performs an action a2 and sends a message M2 to the second agent, and so on. A

round is de�ned by a successive sequence of performing one action and generating a

message for each of the two agents. Both types of agents have the same repertoire of

actions regardless of the eÆciency: apart from plant and harvest actions they have a

Null-action without any e�ect, a sanctioning action Bite, an action Exit, and an action
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Figure 1: Two examples of the reward generating function.

Replace. The later action a�ects the opponent agent in the way that it gets replaced by

a other agent, randomly selected from the population. This may increase the general

possibility for a successful coordination. A game may end with three di�erent outcomes:

an agent performed the Exit action, the environment reached the �nal state Ue, or the

number of rounds in the games exceeded the de�ned threshold rounds.

There is a prede�ned set of symbols S = f0; 1; 2; :::; Smaxg. A message consists

exactly of one of these symbols. A symbol itself has no meaning to an agent, there is

no prede�ned semantics at all.

A game ends successfully if the environment was transformed into the �nal state.

In this case, the last two agents participating in the game get a certain amount E? of

\energy". In other cases there is no energy payo�. Every action that an agent performs

consumes a speci�ed amount of energy of the agent. There are low cost actions (Null,

Exit, and Replace) and high cost actions (P lantx, Harvestx). For a low cost action

the agent consumes energy El > 0, for a high cost action El+Eh, Eh > 0. The cost of

the action Bite is El +Eb, Eb > 0. This action a�ects the other agent in the way that

the \bitten" agent looses pain energy Ep > 0. At the beginning of an agent`s life time

its energy is set to E = Es > 0, its start energy. If E ever falls below 0, the agent dies,

i. e., the agent is removed from the population.

An agent does not know its own type nor perceives the type of another agent. They

are black-boxes to each other. An agent perceives the message of another agent and

{ perhaps { some sensory input like the state of the environment or the fact of being

bitten. In any case not all relevant aspects of the environment are known in the same

way to all the participants. Agents must test di�erent actions at di�erent times and the

only hint to whether an action or message was appropriate or not is given by a reward

signal. This signal is always generated by the agent itself, based on the energy di�erence

between two consecutive actions. A sigmoid function fr (see Equation (1)) generates

the reward signal r based on the energy di�erence ed; a positive energy di�erence results

in a positive reward, a negative di�erence results in a negative reward. The reward

generating function fr is parametrized by two values, a and b:

fr = 2 � a �
1

1 + exp(�b � ed)
� a : (1)

Figure 1 shows two examples of the function. Thus, the individual learning of an agent

is of reinforcement-learning type. This de�nition of a reward signal is a weak one, since

it does not assume any intelligent observer (outside the agent) who generates a reward

signal based on its knowledge about to correct actions.

Beside an energy value agents have an age A, which at the beginning of an agent's

life time is set to 0. Any time an agent is selected to play the game, its age will

be incremented by 1. If the age reaches an individual maximum, Amax, the agent

will be removed immediately from the population. At the start of the simulation, the

population P consists of a certain number of agents Ps. The number of agents during

the simulation may shrink or grow, depending on the �tness of the agents. An agent
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may enter the population if there are at least two agents, whose age is above a value

Asex and whose energy value is above a value Esex. The two \parents" are selected by a

\Roulette wheel" [5] from all possible parent agents based on their energy values. Once

a successful breeding occurred, the two parent agents are prevented from reproduction

for a certain period of time tpause. The amount of gene material parents pass on to

their child is described in the next section. The general schedule of the simulation is:

1. initialize start population Ps

2. do forever

� select randomly two agents, Agent1 and Agent2, and t := 0, U0 := 0

� Agent1 generates and sends a start message M0

� do

{ t := t+ 1

{ Agent2 receives previous messageMt�1 and generates action at and mes-

sage Mt

{ t := t+ 1

{ Agent1 receives previous messageMt�1 and generates action at and mes-

sage Mt

until Ut = Us or at = Exit or t = 2 + rounds

� remove from or add agents to the population

Whenever the number of agents in the population Pt falls below Ps, agents are randomly

added to the population until Pt = Ps. If this situation happens it can be interpreted

as restarting a simulation.

5 Evolution of Frame-like Structures

As mentioned in the Introduction, expectations in choosing an appropriate answer to

a received message are the main feature of the proposed agent architecture. Using

only previously sent messages in order to de�ne an internal state on which an agent

bases its reply and action does not capture the entire situation. Thus, we combine an

internal state with the expectation of a received message. This results in a frame-like

structure which will be executed on two levels. In a �rst step a set Fi of frames is

chosen based on the state of the environment. This step will be performed without any

learning by the agent and is totally determined by the environment. In a second step

the agent chooses one frame from the previously chosen set Fi. The selected frame will

be executed resulting in an action at+1 and a new message Mt+1. A frame F is de�ned

with respect to a received message Mr = Mt in the following way:

if Mr =Me1 then a := act1 and M := mes1
elseif Mr =Me2 then a := act2 and M := mes2
else execute trouble frame F T ;

where at+1 = a and Mt+1 = M . The \trouble frame" F T will be executed in the case

that the received message was neitherMe1 norMe2. This frame has a special structure,

because it does not check the occurrence of a certain message, rather it checks whether

the agent was bitten or not in order to determine the new action and message:

if bitten = true then a := actT1 and M := mesT1
else then a := actT2 and M := mesT2 :

For every state of the environment the agent has nf � 1 frames. The selection of a

frame at time t will be guided by a Q-value QF , i. e., reinforcement learning ([14]) takes

place in order to choose an appropriate frame in a given (environmental) situation. The

entire collection of frames for an agent by a given �nal state Ue of the environment is:
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state (depends on U) frame set Fi = fF(i;0); : : : ; Fi;nf�1g

0: U? F(0;0); : : : ; F(0;nf�1)
1: U = 0 F(1;0); : : : ; F(1;nf�1)
2: U = 1 F(2;0); : : : ; F(2;nf�1)
...

...

Ue: U = Ue � 1 F(Ue;0); : : : ; F(Ue;nf�1)
UT F T

0 ; : : : ; Fnf�1

U? is the frame set for an agent when it starts the communication by generating just

a message M0, and UT is the frame set for the trouble state.

Evolution is based on frames, agents do not change frames during their life time, they

are just able to change the Q-value of a frame with respect to other frames inside the

same frame set. At the beginning of the simulation, all frames of all agents are initialized

randomly. In particular, variables Me1, Me2, mes1, mes2, mesT1, and mesT�2 are

randomly chosen values from S = f0; 1; 2; : : : ; Smaxg, and variables act1, act2, actT1,

and actT2 are randomly chosen values from A = fNull; Bite; Exit; Replace;P lantI ;

HarvestI; P lantII ; : : :g. Inheritance happens on the frame level, i. e., cross-over takes

place between frames, not inside a frame (but inside a frame set). Individual parts of

a frame are subjected to mutation. Therefore, e. g. part Me1 or act2 may get a new

random value during a mutation process. Q-values are not passed on to o�spring, and

are set to small random values at the beginning of an agents life time.
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Figure 2: Results averages 1000 games, apart from the Bites-graph, which shows the total

number of bites in 1000 games. Result of the game (legend for the second graph is shown on

top): a : maximum possible success (counting the occurrence of a \correct" pairing of the

agents); b : the actually achieved success; c : correctly performed Exit; d : Exit in wrong

situation; e : stopped, because maximum rounds exceeded. Ue = 4, Smax = 3, rounds = 10,

E? = 10:0, El = 0:5, Eh = 2:5, Eb = Ep = 0:1, Es = 50:0, Amax 2 f550; : : : ; 800g,

Asex = 20, tpause = 20, a = 5:0, b = 1:0, nf = 2.
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Figure 3: The eight main sequences. Left: Absolute occurrence of sequences, right: relative

occurrence of the sequences (in relation to 346727 successful sequences). The eight sequences

occur 329895 times. See text for further explanations.

Figure 2 shows the general outcome of a simulation based on frame type agents.

The maximum number of agents was set to 1024. The simulation started with 3 agents

and as long as the number of agents was below 15 a higher energy pay o� E? was given

for success than indicated in the �gure (to support an onset of evolution). The number

of agents grows rapidly until the limit is reached. Later, evolution still takes place

optimizing the frame structures. This may result for example in changing cooperation

sequences, or in a \competition" of di�erent sequences (cf. Figure 3). Figure 3 shows

the eight most frequent sequences of the entire simulation. In detail, they are:

number (cf. Fig. 3) number of occurrence sequence M0 M1 a1 M2 a2 : : :

1 160877 1 0 4 0 5 1 6 2 7

2 66551 2 0 4 0 4 0 5 1 6 2 7

3 37402 0 0 4 0 5 1 6 2 7

4 26721 0 1 5 0 4 0 5 1 6 2 7

5 19039 2 1 5 0 4 0 5 1 6 2 7

6 7118 0 0 4 0 4 0 5 1 6 2 7

7 6453 2 0 5 0 4 0 5 1 6 2 7

8 5734 2 1 7 0 4 0 5 1 6 2 7

The �rst sequence occurs 160877 times, out of 346727 successful sequences, without a

Replace-action. In contrast to the previous simulation, frame agents were able to select

the start message M0.

The communicative behavior of agents becomes more and more regular. Because

we have chosen nf = 2 it is obvious that a frame set is assumed to contain exactly

one appropriate frame for P lanters and one for Harvester. An individual only has to

explore which one is better suited. A detailed analysis of the communicative behavior

reveals indeed that communication controls the behavior of agents. Thus, agents realize

the type of the other agent and choose a useful action in the case that the other agent

is of its own type (see Figure 4). Furthermore, we regard the question of which action

is performed on the basis of a received message (see the analysis in Figure 5), and

indeed, agents act in a foreseeable way, i. e., one agent may control by communication

the action of the other agent. Further investigations could be done, especially a more

detailed analysis with respect to a combination of two or more dimensions of interest.

For example, in which situation (state of the environment) a P lanter reacts with which

action after receiving message 0 (cf. left graph on top of Figure 5)?
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Figure 4: Performed actions and sent messages of P lant agents and Harvester agents with

respect to unfavorable agent grouping. P lanters (top row) prefer the Replaces action,

Harvester (bottom row) prefer the Exit action. Both types of agents realized that the

other agent was not a \correct" partner and that without having any direct access to the

type of an agent (neither to the own nor to the type of another agent).

6 Conclusion

In this paper we argued that a strict evolutionary approach to norms may prevent tra-

ditional problems of logic based methods, especially in the case, no norms are pregiven

to agents' disposal. The macro-sociological systems theory of Niklas Luhmann o�ers

an elegant way the anchor normative behavior on structures of expectation. Although

we have not modeled all aspects of generalized media up to now, a normative behavior

of agents, playing a coordination game, in simulation experiments emerged.

In interesting feature of symbolically generalized media is the emergent establish-

ment of functional social substructures [7]. Although still a speculative matter, we

expect media to play also a crucial role in arti�cial agent societies with respect to func-

tional structuring of large scaled systems. Our approach has to be further evaluated

and extended. Thus, in the next period of our project we will extent the described

frame structure with respect to the selection of a frame set 6, which is so far deter-

mined solely by the environment. Furthermore, individual learning capabilities will be

increased.
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